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Tensor Completion via Complementary Global,
Local, and Nonlocal Priors
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Abstract— Completing missing entries in multidimensional
visual data is a typical ill-posed problem that requires appro-
priate exploitation of prior information of the underlying data.
Commonly used priors can be roughly categorized into three
classes: global tensor low-rankness, local properties, and nonlocal
self-similarity (NSS); most existing works utilize one or two
of them to implement completion. Naturally, there arises an
interesting question: can one concurrently make use of multiple
priors in a unified way, such that they can collaborate with each
other to achieve better performance? This work gives a positive
answer by formulating a novel tensor completion framework
which can simultaneously take advantage of the global-local-
nonlocal priors. In the proposed framework, the tensor train (TT)
rank is adopted to characterize the global correlation; meanwhile,
two Plug-and-Play (PnP) denoisers, including a convolutional
neural network (CNN) denoiser and the color block-matching
and 3 D filtering (CBM3D) denoiser, are incorporated to preserve
local details and exploit NSS, respectively. Then, we design a
proximal alternating minimization algorithm to efficiently solve
this model under the PnP framework. Under mild conditions,
we establish the convergence guarantee of the proposed algo-
rithm. Extensive experiments show that these priors organically
benefit from each other to achieve state-of-the-art performance
both quantitatively and qualitatively.
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I. INTRODUCTION

TENSOR is the multidimensional generalization of vector
and matrix, which has recently attracted much atten-

tion in various real-world applications. However, in the data
acquisition process, observed tensor data often suffers from
damaged entries, which severely damage the data quality and
hinder subsequent applications. Tensor completion (TC) aims
at estimating the missing or damaged entries of the underlying
data, which can improve the data quality and is beneficial
for subsequence applications, such as classification [1], target
detection, and recognition [2]. Therefore, tensor completion
is one of the most important problems in computer vision,
image processing, and machine learning. TC has received
increasing attentions and achieved success in various appli-
cations, such as video recovery [3]–[7], hyperspectral image
recovery [8]–[12], hyperspectral compression [13], traffic data
recovery [14]–[16], seismic data recovery [17], [18], recom-
mender systems [19], high speed video completion [20], and
cloud removal [21], [22].

Generally, this ill-posed inverse problem can be tackled
via the maximum a posteriori (MAP) estimation with the
Bayes’ rule [23]. As for TC, since the degradation process
is determined, the likelihood term (corresponding to the data
fidelity term) can be formulated as a Dirac delta function or
a constraint with a projection operator, which enforces the
solution being consistent with the observed data in specific
locations. Thus, the key issue of TC under MAP framework
is to reasonably analysis and effectively utilize the prior
knowledge of the underlying data. When dealing with mul-
tidimensional visual data, three types of prior knowledge are
widely investigated, namely, the global, local, and nonlocal
priors. Below we give a brief introduction of each type of
priors; more details can be found in Section II.

Although being of a mass volume, real-world multidimen-
sional data, such as high-order web links [24] and seismic
data [25], are always inner structured and globally correlated.
It also goes for multidimensional visual data. For example, the
bands of a hyperspectral image are highly correlated such that
its spectral vectors live in a low-dimensional subspace [26].
This low-dimensionality can be mathematically formulated
as low-rankness, i.e., representing the high-dimensional
data under learned lower-dimensional bases. Although there
has many definitions of the tensor rank, four mainstream
works are the CANDECOMP/PARAFA (CP) rank [27],
the Tucker rank [28], the tubal rank [29], and the tensor
train (TT) rank [30]. Regularizing the global low-rankness

1941-0042 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on June 01,2022 at 02:01:06 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6540-946X
https://orcid.org/0000-0002-9099-4154
https://orcid.org/0000-0003-2631-9485
https://orcid.org/0000-0001-7766-230X
https://orcid.org/0000-0001-6833-5227


ZHAO et al.: TC VIA COMPLEMENTARY GLOBAL, LOCAL, AND NONLOCAL PRIORS 985

TABLE I

EXAMPLES OF SOME EXISTING TENSOR COMPLETION METHODS
UTILIZING DIFFERENT PRIORS

for TC, referred to as low-rank TC (LRTC), has shown
an impressive capability for recovering real-world tensor
data [24], [31]–[35].

When it comes to multidimensional visual data, the local
property should not be neglected. For example, the suc-
cessive frames of the videos, the adjacent bands of hyper-
spectral images, and the neighbor spatial pixels are often
homogeneous. Multidimensional visual data invariably con-
sist of spatial slices while the spectral (or temporal) local
relation between these spatial slices are different. Therefore,
in this paper, we mainly focus on the spatial local property,
which widely exists on all kinds of the multidimensional
visual data. Traditional visual tensor data recovery methods
exploit the spatial local priors by minimizing some hand-
craft regularizers, such as the total variation (TV) [36] used
in [37] and [38] and the tight wavelet frame (framelet)
[39], [40]. More recently, Zhao et al. [4] formulated an implicit
regularization term by plugging a deep convolutional neural
network (CNN) denoiser, i.e., the FFDNet [41], to make use
of the learned deep denoising prior. Since the architecture of
FFDNet is a cascade of convolution layers, and rectified linear
units (ReLU) [42] layers, which are all local operations, it can
be viewed as expressing the local prior knowledge.

Another important property for visual data is the nonlo-
cal self-similarity (NSS), which describes the existence of
abundant nonlocal similar structures including regular and
repetitive patterns [43]. Over the past decade, NSS under-
lies the state-of-the-art in gray image denoising and has
been fully exploited in nonlocal means [44] and block-
matching and 3 D filtering (BM3D) [43]. This idea has been
extended to the recovery of color images [45]–[47], ultrasound
images [48], volumetric images [49], videos [50], and multi-
spectral/hyperspectral images [51]–[53].

We summarize the types of prior knowledge used in
some representative TC methods in Table I. One can see
that existing TC methods, although achieving good perfor-
mance, utilize only one or two types of the priors mentioned
above. Intuitively, these three types of priors are complemen-
tary to each other since they depict the characteristics of
multidimensional visual data from different views. Naturally,
there arises an interesting question: can one jointly make use
of multiple priors in an unified way, such that these priors can
collaborate with each other to achieve better performance?
This paper gives a positive answer by formulating a novel

Fig. 1. An illustration of effects of different priors in the color image
completion with sampling rate (SR)=0.1. (a)–(d): the recovered results by
GLON without FFDNet and CBM3D, GLON without FFDNet, GLON
without CBM3D, and the proposed GLON, respectively.

tensor completion framework which can simultaneously and
complementarily employ these three types of priors, and we
refer it as Global-LOcal-Nonlocal (GLON).

Considering that TMac-TT (see Sec. II.A) is an effective
and efficient regularizer to expressing the global low-rankness,
we directly use the TT low-rank constraint, remaining the local
and nonlocal regularizers in a general formulation, to charac-
terize the global low-rankness prior. Without loss of generality,
the suggested GLON framework is formulated as

min
M

l−1�
i=1

αi

2
�K(M)[i] − Xi Yi�2

F +λ1�L(M)+λ2�N (M),

s.t . U�(M) = U�(T ), (1)

where M ∈ Rn1×···×nl is the underlying completed tensor,
T ∈ Rn1×···×nl is the observed tensor with missing data, � is
the index of observed entries, U�(·) is the projection operator
on �, λ1 and λ2 are regularization parameters, the first term
is TMac-TT expressing the global prior, and �L(M) and
�N (M) denote regularization terms expressing the local prior
and the nonlocal prior, respectively. In the experimental part,
we directly adopt two denoisers, i.e., FFDNet and CBM3D,
to respectively enforce the local and nonlocal priors under the
Plug-and-Play (PnP) framework. Then, we design an effec-
tive proximal alternating minimization (PAM) algorithm for
solving the proposed tensor completion model and establish
the theoretical convergence guarantee. Extensive numerical
experiments illustrate that the proposed method can generate
satisfactory results, and exhibits obvious superiority over com-
pared methods both visually and quantitatively.

In Fig. 1, we display a toy example to illustrate that the
regularization terms in our model characterize different types
of prior knowledge, and they are indeed complementary to
each other. It can be found that, when only TMac-TT (GLON
without FFDNet and CBM3D) used, we can only see the
overall structure from the completion result but failed to dis-
tinguish details and textures. When TMac-TT cooperates with
CBM3D (GLON without FFDNet), the performance becomes
much better since the repetitive textures are well preserved.
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However, the result by TMac-TT+CBM3D is a little bit blurry
(See the bottom-left corner of Fig.1-(b)). Similarly, GLON
without CBM3D (TMac-TT+FFDNet) acts well on the edges
but destroys some repetitive patterns (See the wavy lines in
the top-right corner of Fig.1-(c)). In comparison, the proposed
method, which incorporates three types of the prior knowledge,
deals well with the overall structure, repetitive patterns, and
sharp edges, and herein achieves the best performance.

In summary, this paper mainly has three contributions.
• Based on MAP principle, we propose a unified low-

rank tensor completion framework for multi-dimensional
image recovery, in which different types of local and
nonlocal priors knowledge can be flexibly and simul-
taneously utilized. The proposed framework makes the
incorporated priors benefit from each other, achieving a
comprehensive and multi-perspective characterization of
the intrinsic properties of multidimensional images.

• Based on the above framework, we choose two denoisers
to respectively express the local and nonlocal priors. More
precisely, for the local prior, we plug a CNN regularizer to
characterize complex image features by exploiting a large
training dataset. Moreover, we use CBM3D to explore
the nonlocal redundancy of data, and complement the
poor generalization of CNN for different data to achieve
satisfactory results.

• We design an effective strategy to solve the rather chal-
lenging optimization- and learning-based tensor comple-
tion framework and establish the theoretical convergence
guarantee. More precisely, we use PAM to decompose
the original problem into easier subproblems, which has
closed-form solutions or can be efficiently solved by
the alternating direction method of multipliers (ADMM)
algorithm under the PnP framework.

The remainder of this paper is organized as follows.
Section II reviews some related works. Section III introduces
some preliminary notation and knowledge. Section IV presents
the proposed framework with an efficient solving algorithm.
Section V provides experimental results and discusses some
details. Section VI summarizes this paper.

II. RELATED WORK

As previously mentioned, the prior knowledge utilized for
TC can be categorized into three types: global low-rankness,
local property, and nonlocal self-similarity. In this section,
we go through the representative works related to these three
categories.

A. Global Low-Rankness

The global low-rankness reflects the global correlation by
representing the high-dimensional data under learned lower-
dimensional bases. There are several representative works
characterizing the tensor global low-rankness as follows.

1) CP Rank: The CP rank [27] is the smallest number
of rank-one tensors that produce the target tensor. Although
many methods have proposed to handle CP-rank minimization
problem [34], it is a NP-hard problem [59], [60]. So finding
the optimal low-CP-rank approximation of the target tensor is
still an open problem.

2) Tucker Rank: The Tucker rank [28] is defined as the
vector whose elements are the ranks of unfolding matrices
of the target tensor. Liu et al. [33] used the sum of nuclear
norms (SNN) as its convex surrogate to solve tensor com-
pletion problem. Xu et al. [61] proposed a low-rank matrix

factorization method by factorizing each unfolding matrix into
the product of two smaller matrices. However, the Tucker rank
is developed based on an unbalanced unfolding scheme, such
that it only captures the correlation between one single mode
of the tensor and all other modes [54].

3) Tubal Rank: The tubal rank [62] is defined as the
number of non-zero singular tubes obtained by the tensor
singular value decomposition of the target tensor. In [32],
Zhang et al. proposed the tensor nuclear norm (TNN), which
is a convex surrogate of the tensor tubal rank, for the LRTC.
Jiang et al. further consider the semi-invertible transform [63]
and the data-adaptive dictionary [64] for better representation
of the global low-rankness within this framework. TNN is
also applied for the tensor robust principal component analysis
by Lu et al. [65]. Liu et al. [66] considered the low-tubal-
rankness to explore the global correlations of data in tensor
completion problem.

4) Tensor Train Rank: The TT rank [30] is the vector
that its elements are the ranks of canonical matrices in
the matrix product state representation of the target ten-
sor. Bengua et al. [54] factorized each canonical matrix as
the product of two low-rank matrices to approximate the
TT rank and performed tensor completion using parallel
low-rank matrix factorization method (TMac-TT). Compared
with Tucker rank, TT rank is obtained by a more bal-
anced matricization scheme, i.e., matricize the tensor along
permutations of modes. Therefore, TT rank can capture the
correlations between different modes, which is more suitable
for higher-orders. The TT rank has shown promising results
to capture the low-rank structure of high-order tensor data
[54], [58], [67]. In this work, TMac-TT is introduced to
characterize the global low-rankness of the multi-dimensional
visual data.

B. Spatial Local Property

As mentioned in Sec. I, we mainly consider the spatial
local property, which invariably exists in multidimensional
visual data, instead of the spectral (or temporal) local relation,
which could be inconstant for different types of data. For
the 2 D image denoising, TV [36], [68] regularizer is well-
known for its remarkable ability of preserving the edges and
enhancing the piece-wise local continuity of the visual data.
For the multidimensional visual data completion in the tensor
form, Li et al. [37] and Ji et al. [38] utilized TV together
with the SNN constraint and low-rank matrix factorization,
respectively. Jiang et al. [55] further introduced used framelet
to enhance the spatial smoothness of completion results by
low-Tucker-rank regularization. For various image recovery
tasks, Zhang et al. [69] learned the deep denoising prior
expressed by a CNN. The representation ability of the CNN is
remarkably higher than those hand-craft regularizers. In [4],
Zhao et al. adopted FFDNet to regularize the spatial slices
of the tensor visual data and their method showed promising
capability of recovering the fine spatial details.

C. Nonlocal Self-Similarity

Nonlocal self-similarity (NSS) describes the existence of
abundant nonlocal similar structures, such as regular and
repetitive patterns, by stacking together patches of similar
textures across a nature image. A representative work is the
block-matching and 3 D filtering (BM3D) algorithm proposed
by Dabov et al. [43], which combines sparsity and NSS for
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image denoising. Dong et al. [70] exploited NSS to obtain
good estimates of the sparse coding coefficients and proposed
the nonlocally centralized sparse representation model for
image restoration. Gu et al. [71] proposed the weighted
nuclear norm minimization (WNNM) by combining NSS and
low-rank matrix approximation. Recently, NSS-based methods
have been successfully applied to multidimensional images
recovery, including the LRTC problem. Xie et al. [53] inte-
grated the nonlocal spatial-spectral similarity into the LRTC
model. Li et al. [56] promoted the NSS of the tensor
by employing BM3D for tensor completion. He et al. [57]
designed the spatial non-local self-similarity regularizer with
respect to the representation coefficients in the subspace
spanned by left singular vectors. These methods are good at
completing regular high-frequency textures, but more or less
compromise local image details.

III. PRELIMINARIES

In this section, we briefly introduce some preliminary nota-
tion and knowledge used in our work.

A. Tensor Basics

The scalars, vectors, matrices, and tensors are denoted
as m, m, M , and M, respectively. The order (or mode)
of a tensor is the number of its dimensions. Given a
tensor M ∈ Rn1×n2×···×nl , the mode-(1, 2, · · · , i) (i =
1, 2, · · · , l − 1) canonical matricization is denoted as M[i] ∈
R�

i
k=1nk×�l

k=i+1 nk [30]. It can be implemented via the function
“reshape”1 in Matlab as

M[i] = reshape(M, [�i
k=1nk,�

l
k=i+1nk]).

We use “unreshape” denotes the inverse operator of
reshape, i.e., unreshape[i](M[i]) := M. The TT rank
is defined as r = (rank(M[1]), rank(M[2]), . . . , rank(M[l−1])).
Please refer to [30] for the details of the TT-rank.

B. Visual Data Tensorization

Using the visual data tensorization (VDT) [72], TT-based
TC methods can efficiently utilize the global correlation of
multidimensional visual data in a high-order manner. We intro-
duce VDT for dimension augmentation by rearranging the
tensor elements. Given a third-order visual data Z ∈ Rm×n×p ,
the details of VDT process are as follows. Assume that the two
spatial dimensions m and n have factorizations m = �q

d=1 md

and n = �q
d=1 nd , we first factorize m×n to m1 ×m2 × . . .×

mq × n1 × n2 × . . . × nq , then we permute the order to
m1×n1×m2×n2×. . .×mq ×nq and reshape the dimension to
the size m1n1 × . . .×mqnq . Finally, we transform the original
tensor Z to a high-order Z̃ of size m1n1 × . . .× mqnq × p.
After applying the completion algorithm on the higher-order
tensor, using the reverse operation of VDT on the result into
the original tensor form.

C. Plug-and-Play Framework

The Plug-and-Play (PnP) framework provides a flexible way
to embed different types of priors into MAP-based probability
models. Given a(n) (implicit) prior �(x), its proximal operator
of proxφ : Rn → Rn is given by

proxφ(y) = arg min
x

{�(x)+ β

2
�x − y�2}. (2)

1https://www.mathworks.com/help/matlab/ref/reshape.html

The minimizer of (2) can be obtained through the mapping
of the input y, which is equivalent to map the noisy image
to the clean image. Thus, (2) can be replaced by a denoiser
under the PnP framework. Thereby, we remark that �(x)
denotes an implicit regularizer that deliver various image
priors, particularly the deep priors.

PnP has been widely used in image processing. Based
on the image prior information, some hand-crafted denoisers
have been designed, such as TV denoiser, CBM3D denoiser
[43], [45], and WNNM denoiser [73], [73]. Recently, based
on training on a large number of natural image sets for
specific tasks, denoisers [32] based on deep learning have
become popular to learn data-driven image priors, such as
FFDnet [41], MLP [74], and DCNN [75]. Under the PnP
framework, these traditional denoisers and deep learning-based
denoisers can be flexibly plugged as part of the modular.
The above PnP framework has been successfully applied in
various problems [69], [76], [77]. In addition, it has also been
poineered for higher order tensor data in [78].

IV. TENSOR COMPLETION USING

GLOBAL-LOCAL-NONLOCAL PRIORS

This section is divided into four parts. Section IV.A estab-
lishes a unified low-rank tensor completion framework under
the MAP framework. Section IV.B designs a PAM algorithm
to optimize the proposed framework. Section IV.C establishes
the theoretical convergence guarantee. Section IV.D shows the
rank-increasing scheme.

A. Model Formulation

Tensor completion aims at estimating the underlying tensor
data M ∈ Rn1×n2×···×nl from its partial observation T with
the support �. The MAP estimator maximizes the posterior
probability P(M|T ) under the Bayes rule, i.e.,

M = arg max
M

P(M|T ) = arg max
M

P(T |M)P(M)

P(T )
= arg max

M
{log P(T |M)+ log P(M)} . (3)

In (3), the likelihood term P(T |M) is determined by the
observation process. Assuming that the observation of each
entry in M is independent to each other, the likelihood term
can be written as

P(T |M) =
�

i1i2 ···il ∈�
δ(Mi1 i2···il − Ti1 i2···il ), (4)

where δ(·) is the Dirac delta function, i.e.,

δ(x) =
�∞, if x = 0,

0, otherwise,

and it satisfies
� ∞
−∞ δ(x)dx = 1. Maximizing (4) enforces

that the estimation should strictly agree with the observation
in �. To avoid the situation where zeros time infinity terms,
we directly generalize the Dirac delta function with respect to
the support � as

δ�(M − T ) =
�∞, if M� = T�,

0, otherwise,

where M� = T� indicates that M equals to T with respect to
the support � and δ�(·) is logarithm invariant. Consequently,
the logarithm of the likelihood term turns to be

log P(T |M) = δ�(M − T ).
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Then, employing the global TT low-rankness, local, and nonlo-
cal property of M, i.e., M ∼ e−(φG(M)+λ1φL (M)+λ2φN (M)),
the prior term in (3) can be formulated as

log P(M) = − (φG(M)+ λ1φL(M)+ λ2φN (M)) . (5)

Although explicitly formulating the prior distribution of M is
very difficult when φG , φL , and φN are complicated, we can
still effectively obtain the MAP estimation as long as we have
φL and φN .

By using the TT low-rank to depict the global low-
rankness prior, the proposed unified low-rank TC framework
is formulated as

min
X,Y,M

l−1�
i=1

αi

2
�K(M)[i] − Xi Yi�2

F +
�(M − T )

+ λ1�L(M)+ λ2�N(M), (6)

where K is the VDT operator (see Sec. III.B), K(M) ∈
Rn1×n2×···×nl is the augmented tensor by VDT, αi are pos-
itive weight parameters satisfying

� j−1
i=1 αi = 1, X =

(X1, X2, · · · , Xl−1) and Y = (Y1,Y2, · · · ,Yl−1) are factor
matrices, λ1 and λ2 are regularization parameters.�L(M) and
�N (M) denote regularization terms expressing the local prior
and the nonlocal prior, respectively. The indicator function

�(·) is defined as


�(M − T ) =
�

0, if M� = T�,
∞, otherwise.

Owing to the specific structure of the Dirac delta function,

�(M−T ) reaches its minimal value at the same point where
δ�(M−T ) achieves its maximal value. Meanwhile, their roles
are equivalent to constraint term U�(M) = U�(T ) in (1).

B. The PAM Solver

To facilitate optimization, we use the half quadratic split-
ting (HQS) technique [79], [80] and introduce the variable P ,
the (6) turns the following problem:

min
M,X,Y,P

l−1�
i=1

αi

2
�K(M)[i] − Xi Yi�2

F + λ1�L(M)

+ λ2�N(P)+ β

2
�P − M�2

F + 
�(M − T ), (7)

where β is a penalty parameter. Since the optimization prob-
lem (7) is nonconvex and has four variables, we design an
algorithm based on PAM [81] to resolve the problem (7) into
several easier subproblems. In the alternating minimization
scheme, we iteratively update X , Y , P , and M as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt+1 = arg min
X

{Q1(X |Xt )

= F(X,Y t ,P t ,Mt )+ ρ

2
�X − Xt�2

F },
Y t+1 = arg min

Y
{Q2(Y |Y t)

= F(Xt+1,Y,P t ,Mt )+ ρ

2
�Y − Y t�2

F },
P t+1 = arg min

P
{Q3(P |P t)

= F(Xt+1,Y t+1,P,Mt )+ ρ

2
�P − P t�2

F },
Mt+1 = arg min

M
{Q4(M|Mt )

= F(Xt+1,Y t+1,P t+1M)+ ρ

2
�M − Mt�2

F },

(8)

where F(X,Y,P,M) is the objective function in (7), ρ is a
positive constant, and t denotes the iteration number. Next,
we discuss the details for solving the X-, Y -, P-, and
M-subproblems.

X-subproblem: as the minimizations with respect to each
Xi are decoupled, we decomposed it into l − 1 independent
problems as follows:
Xt+1

i = arg min
Xi

αi

2
�Xi Y

t
i − K(Mt )[i]�2

F + ρ

2
�Xi − Xt

i �2
F ,

(9)

which has the closed-form solution

Xt+1
i = (αi M̃ t[i](Y t

i )
T + ρXt

i )(αi Y
t
i (Y

t
i )

T + ρ I )−1, (10)

where I ∈ Rri ×ri is an identity matrix.
Y -subproblem: similarly, the Y -subproblem is decomposed

into l − 1 independent problems as follows:
Y t+1

i = arg min
Yi

αi

2
�Xt+1

i Yi − K(Mt )[i]�2
F + ρ

2
�Yi − Y t

i �2
F ,

(11)

which has the closed-form solution

Y t+1
i = (αi (X

t+1
i )T Xt+1

i + ρ I )−1((αi X t+1
i )T M̃t

[i] + ρY t
i ).

(12)

P-subproblem: the P-subproblem is

P t+1 =arg min
P

λ2�N(P)+ β

2
�P−Mt�2

F + ρ

2
�P − P t�2

F .

(13)

In particular, Pk+1 is computed by

Pk+1 = arg min
P

λ2�N(P)+ β + ρ

2
�P − βMt + ρP t

β + ρ
�2

F .

(14)

Letting (βMt +ρP t )/(β+ρ) as the input of a denoiser, then
we can get

Pk+1 = DN((βMt + ρP t )/(β + ρ), σ2), (15)

where σ2 = √
λ2/(β + ρ), DN denotes the denoiser to express

the nonlocal prior. Based on the PnP framework, (βMt +
ρP t )/(β + ρ) is treated as the observed tensor, and Pk+1 is
the denoising result by the plugged prior.
M-subproblem: the M-subproblem is

Mt+1 = arg min
M

l−1�
i=1

αi

2
�Xt+1

i Y t+1
i − K(M)[i]�2

F

+
�(M − T )+ λ1�L(M)

+β
2

�P − Mt�2
F + ρ

2
�M − Mt�2

F . (16)

We iteratively solve (16) using ADMM [37]. The
M-subproblem is transformed into the following problem by
introducing the auxiliary variable E :

arg min
M

l−1�
i=1

αi

2
�Xt+1

i Y t+1
i − K(M)[i]�2

F + λ1�L(E)

+
�(M−T )+ β
2

�P − Mt�2
F + ρ

2
�M − Mt�2

F ,

s.t . E = M. (17)
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By separating the variables in (17) into two groups M and E ,
(17) fits the framework of ADMM [67], [82]. To tackle the
linear constraint, the corresponding augmented Lagrangian
function of (17) is

L(M, E,F) =
l−1�
i=1

αi

2
�Xt+1

i Y t+1
i − K(M)[i]�2

F

+λ1�L(E)+ β1

2
�E − M + F

β1
�2

F

+
�(M − T )+ β

2
�P − Mt�2

F

+ ρ

2
�M − Mt�2

F , (18)

where F is Lagrangian multiplier and β1 and β are penalty
parameters.

Then, we use ADMM to solve the problem (17) with the
following scheme:

⎧⎪⎪⎨
⎪⎪⎩

Mt+1,k+1 = arg min
M

L(M, Ek,Fk),

Ek+1 = arg min
E

L(Mt+1,k+1, E,Fk),

Fk+1 = Fk + β1(Ek+1 − Mt+1,k+1).

(19)

Following, we give the details on each step of ADMM.
ADMM-step 1: update M. Mt+1,k+1 is the solution of

the following least square problem:

Mt+1,k+1 = arg min
M

l−1�
i=1

αi

2
�Xt+1

i Y t+1
i − K(M)[i]�2

F

+
�(M − T )+ β1

2
�E − M + F

β1
�2

F

+ β

2
�P − M�2

F + ρ

2
�M − Mt�2

F . (20)

To minimize (20), we have 
�(M−T ) = 0, i.e., M� = T�.
Then, the elements in the complementary set of � can be
obtained by solving a least square problem. Thus, Mt+1,k+1

can be updated by

Mt+1,k+1 = U�c
� W

1 + β1 + β + ρ


 + T , (21)

where W = �l−1
i=1 αireshape

−1
[i] (X

t+1
i Y t+1

i )+ β1E + βP +
F + ρMt .

ADMM-step 2: update E . Ek+1 is computed by

Ek+1 = arg min
E

λ1�L(E)+ β1

2
�E − Mk+1 + Fk/β1�2

F .

(22)

Letting Mk+1 − Fk/β1 as the input of a denoiser, then we
can get

Ek+1 = DL(Mk+1 − Fk/β1, σ1), (23)

where σ1 = √
λ1/β1, DL denotes the denoiser for expressing

the local image prior.

Algorithm 1 The PAM Algorithm for Solving (7)

C. Convergence Analysis

In this part, we establish the convergence analysis of Algo-
rithm 1. For convenience, we define the following formulas:

F(X,Y,P,M) :=
l−1�
i=1

αi

2
�K(M)[i] − Xi Yi�2

F + λ1�L(M)

+λ2�N (P)+β
2

�P−M�2
F +
�(M−T ),

W (X,Y,P,M) :=
l−1�
i=1

αi

2
�K(M)[i]−Xi Yi�2

F + β
2

�P−M�2
F ,

f1(P) := λ2�N (P),
f2(M) := λ1�L(M).

Now, we establish the convergence analysis of the proposed
algorithm as follows.

Theorem 1: Assuming that the sequence {Xt ,Y t ,P t ,Mt }
is bounded and �L(M) and �N(M) are KŁ functions,
the sequence {Xt ,Y t ,P t ,Mt } generated by Algorithm 1
(i.e., iterations in (8)) globally converges to a critical
point of (7).

As the process of updating in (8) is factually a special
instance of the Algorithm 4 described in [81], the proof of
Theorem 1 follows Theorem 6.2 of [81] if the following
conditions are satisfied.

i) F satisfies the KŁ property at each point,
ii) the sufficient decrease condition ((64) in [81]),
iii) the relative error condition ((65)-(66) in [81]).

The road map of our proof also follows this line. Before
verifying these conditions, we present some related definitions
and lemmas.

Definition 1 (KŁ property, [81]): A proper lower semi-
continuous function f : Rn → R ∪ +∞ is said to have the
KŁ property at x̄ ∈ dom(∂ f ) if there exist η ∈ (0,+∞],
a neighborhood U of x̄ , and a continuous concave function
φ : [0, η) → [0,+∞) such that:
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i) φ(0) = 0,
ii) φ is C1 on (0, η),
iii) φ	 is positive on (0, η),
iv) for each x ∈ U ∩ [ f (x̄) < f (x) < f (x̄) + η], the KŁ

inequality hold:
φ	( f (x)− f (x̄))dist(0, ∂ f (x)) ≥ 1,

where the norm involved in dist (·, ·) is �·�2 and the convention
dist(0,∅) := +∞ is used.

Lemma 1 (Theorem 3 in [83]): A semi-algebraic real val-
ued function f is a KŁ function, i.e., f satisfies KŁ property
at each x ∈ dom( f ).

We first verify the KŁ property of function F(X,Y,P,M).
Lemma 2 (KŁ Lemma): Function F(X,Y,P,M) satisfies

the KŁ property at each point.
Proof: We prove that each term of F(X,Y,P,M)

satisfies the KŁ property. According to the assumption of
Theorem 1, �L(M) and �N(M) satisfy the KŁ property.
�K(M)[i]−Xi Yi�2

F is a polynomial of (X,Y,M) and polyno-
mials are semi-algebraic functions [83]. Similarly, �P−M�2

F
is also a semi-algebraic function. Moreover, the indicator
function
�(·) is semi-algebraic [83]. Since the semi-algebraic
function satisfies the KŁ property (see Lemma 1), therefore,
the function F(X,Y,P,M) satisfies the KŁ property. �

Then, we show that the bounded sequence {Xt ,Y t ,P t ,Mt }
satisfies the sufficient decrease condition.

Lemma 3 (Sufficient Decrease Lemma): For ρ > 0, let
{Xt ,Y t ,P t ,Mt } be the sequence generated by Algorithm 1,
then

F(Xt+1,Y t ,P t ,Mt )+ ρ

2
�Xt+1 − Xt�2

F

≤ F(Xt ,Y t ,P t ,Mt ),

F(Xt+1,Y t+1,P t ,Mt )+ ρ

2
�Y t+1 − Y t�2

F

≤ F(Xt+1,Y t ,P t ,Mt ),

F(Xt+1,Y t+1,P t+1,Mt )+ ρ

2
�P t+1 − P t�2

F

≤ F(Xt+1,Y t+1,P t ,Mt ),

F(Xt+1,Y t+1,P t+1,Mt+1)+ ρ

2
�Mt+1 − Mt�2

F

≤ F(Xt+1,Y t+1,P t+1,Mt ). (24)
Proof: According to Q1, Q2, Q3, and Q4 defined in (8),

when Xt+1,Y t+1, P t+1, and Mt+1 are minimizers of Q1, Q2,
Q3, and Q4, we have

F(Xt+1,Y t ,P t ,Mt )+ ρ

2
�Xt+1 − Xt�2

F

= Q1(X
t+1|Xt ) ≤ Q1(X

t |Xt ) = F(Xt ,Y t ,P t ,Mt ),

F(Xt+1,Y t+1,P t ,Mt )+ ρ

2
�Y t+1 − Y t�2

F

= Q2(Y
t+1|Y t ) ≤ Q2(Y

t |Y t ) = F(Xt+1,Y t ,P t ,Mt ),

F(Xt+1,Y t+1,P t+1,Mt )+ ρ

2
�P t+1 − P t�2

F

= Q3(P t+1|P t) ≤ Q3(P t |P t ) = F(Xt+1,Y t+1,P t ,Mt ),

F(Xt+1,Y t+1,P t+1,Mt+1)+ ρ

2
�Mt+1 − Mt�2

F

= Q4(Mt+1|Mt ) ≤ Q4(Mt |Mt )

= F(Xt+1,Y t+1,P t+1,Mt ).

The proof of the sufficient decrease condition is
completed. �

Next, we show the bounded sequence
�

Xt ,Y t ,
P t ,Mt

�
satisfies the relative error condition.

Lemma 4 (Relative Error Lemma): The sequence
�

Xt ,Y t ,
P t ,Mt

�
is generated by Algorithm 1 and ρ > 0. Then, there

exist V t+1
1 , V t+1

2 , V t+1
3 , and V t+1

4 satisfying

�V t+1
1 + ∇X W (Xt+1,Y t ,P t ,Mt )�F ≤ ρ�Xt+1 − Xt�F ,

�V t+1
2 + ∇Y W (Xt+1,Y t+1,P t ,Mt )�F ≤ ρ�Y t+1 − Y t�F ,

�V t+1
3 + ∇PW (Xt+1,Y t+1,P t+1,Mt )�F

≤ ρ�P t+1 − P t�F ,

�V t+1
4 +∇MW (Xt+1,Y t+1,P t+1,Mt+1)�F

≤ ρ�Mt+1−Mt�F .

(25)
Proof: Note that Xt+1,Y t+1, P t+1, and Mt+1 are,

respectively, optimal solutions of Q1, Q2, Q3, and Q4. For
each subproblem, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 = αi (X
t+1
i Y t

i − K(M)t[i])Y
tT
i + ρ(Xt+1

i − Xt
i ),

0 = αi X tT
i (X

t+1
i Y t

i − K(M)t[i])+ ρ(Xt+1
i − Xt

i ),

0 ∈ ∂P f1(P t+1)+ ∇PW (Xt+1,Y t+1,P t+1,Mt )

+ρ(P t+1 − P t ),

0 ∈ ∂
�(Mt+1)+ ∂M f2(Mt+1)+ ∇M
P t+1,W (Xt+1,Y t+1,Mt+1)+ ρ(Mt+1 − Mt ).

(26)

Then we define V1, V2, V3, and V4 as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

V t+1
1 := 0,

V t+1
2 := 0,

V t+1
3 := −∇PW (Xt+1,Y t+1,P t+1,Mt )

−ρ(P t+1 − P t ),

V t+1
4 := −∇MW (Xt+1,Y t+1,P t+1,Mt+1)

−ρ(Mt+1 − Mt ).

(27)

It is clear that V t+1
3 ∈ ∂P f1(P t+1) and V t+1

4 ∈ ∂
�(M) +
∂M f2(Mt+1). Thus, we have

�V t+1
1 + ∇X W (Xt+1,Y t ,P t ,Mt )�F

≤ ρ�Xt+1 − Xt�F ,

�V t+1
2 + ∇Y W (Xt+1,Y t+1,P t ,Mt )�F

≤ ρ�Y t+1 − Y t�F ,

�V t+1
3 + ∇PW (Xt+1,Y t+1,P t+1,Mt )�F

= ρ�P t+1 − P t�F ≤ ρ�P t+1 − P t�F ,

�V t+1
4 + ∇MW (Xt+1,Y t+1,P t+1,Mt+1)�F

= ρ�Mt+1 − Mt�F ≤ ρ�Mt+1 − Mt�F . (28)

The proof of the relative error condition is completed. �
Now, we establish the proof of Theorem 1.

Proof: [Proof of Theorem 1] According to Lemma 2,
F(X,Y,P,M) satisfies the KŁ property.

Combining Lemmas 3 and 4, we show that the bounded
sequence {Xt ,Y t ,P t ,Mt } satisfies the sufficient decrease
condition and relative error condition. In fact, Lemmas 3 and 4
correspond to the (64)–(66) in [81]. Under these conditions,
this proof conforms to Theorem 6.2 in [81].

Therefore, the bounded sequence {Xt ,Y t ,P t ,Mt } globally
converges to a critical point of (7). The proof of Theorem 1
is completed. �
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In the following, we show that there are a large number
of denoisers satisfying the conditions of Theorem 1, such as
TV [84], WNNM [73], and BM3D [85].

Remark 1: For many state-of-the-art denoisers, e.g., TV,
WNNM, and BM3D, the corresponding regularizers satisfy the
KŁ property.

Proof: The proximal operator of the regularizer Prox� :
Rn1×n2 → Rn1×n2 is defined as

Prox�(B) = arg min
M
�(M)+ β

2
�M − B�2

F . (29)

Under the PnP framework, since the problem (29) can be
regard as a denoising problem, the proximal operator Prox�
can be replaced by denoising algorithms (termed as denoisers),
which map the noisy image to the clean image.

The corresponding subproblem of (anisotropic) TV denoiser
has the explicit mathematical form

arg min
M

�DM�1 + β

2
�M − B�2

F ,

where D is a derivative operator. Since l1-norm is semi-
algebraic [83] and D is a linear operator, the composi-
tion �DM�1 is semi-algebraic. Therefore, the regularizer
�TV(M) := �DM�1 is a semi-algebraic function and satisfies
the KŁ property.

The corresponding subproblem of WNNM denoiser has the
explicit mathematical form

arg min
M

�
j

�R j (M)�w,∗ + β

2

�
j

�R j (M)− R j (B)�2
F ,

where R j is the operator which extracts the similar
patches with respect to the j -th key patch, �R j (M)�w,∗ =
�kwkσk(R j (M)), and σk(R j (M)) denotes the k-th singular
value of R j (M) [73]. According to Lemma 6 in [86], the
�R j (M)�w,∗ is semi-algebraic. Since finite sums of semi-
algebraic functions is semi-algebraic [83], the regularizer
�WNNM(M) := �

j �R j (M)�w,∗ satisfies the KŁ property.
The corresponding subproblem of BM3D denoiser has the

explicit mathematical form

arg min
M

�ψ(M)�p + β

2
�M − B�2

F ,

where ψ is the analysis operator of BM3D [85]. Since
l p-norm is a semi-algebraic function [83], [86] and ψ is a
linear operator [85], the composition �ψ(M)�p is a semi-
algebraic function. Thus, the regularizer �BM3D(M) :=
�ψ(M)�p satisfies the KŁ property. The proof is
completed. �

The Remark 1 can be easily extended to the color image
case. For example, the KŁ property of CBM3D which is an
extension of BM3D on color images can be similarly derived.

Inspired by the success of CNN for image denoising,
by exploiting the large training dataset, we choose the CNN
denoiser, i.e. FFDNet [41], to preserve the local image details.
Besides, due to the superior ability of CBM3D [45] in
preserving NSS, we use the traditional CBM3D denoiser to
express the nonlocal image prior. In the Algorithm 1, we plug
in FFDNet denoiser and CBM3D denoiser under the PnP
framework to solve their related subproblem. We remark that
both two denoisers are applied on spatial slices. For color
videos, we feed the data into the denoisers frame by frame.
FFDNet is expected to preserve the abundant image spatial
local details by bringing in the external prior learned from the

training data of. CBM3D can explore and enhance the nonlocal
structure, including fine and repetitive patterns.

Remark 2: How to formulate the corresponding regularizer
of the deep denoiser is still an open problem. However, this
fact should not prevent us to use such state-of-the-art CNN
denoisers. A very recent and related work by Ryu et al. [87]
shows that the ADMM-PnP algorithm would converge to a
stationary point if the CNN denoiser is properly trained,
i.e., satisfying the Lipschitz condition. Thus, though we can’t
guarantee the KŁ property, the convergence of the inner
loop for the FFDNet related subproblem would empirically
contributes to the convergence of the outer loop, i.e., the PAM
iterations.

D. Rank-Increasing Scheme

The estimation of TT-rank r = (M[1],M[2], · · · ,M[l−1])
is important to capture global structures of the underly-
ing tensor. Therefore, we adopt a rank-increasing scheme
to adjust it automatically [61]. Considering that matriciz-
ing the tensor along permutations makes the size of the
middle unfolding matrices more balanced than those of the
border matrices, the TT-rank mainly depends on the middle
unfolding matrices. Thus, we set the initial TT-rank as r =
(n1, n1n2, r0

3 , r
0
4 , · · · , r0

l−3, nl−1nl , nl ) and increase r t+1
n to

min(rn +�rn, rmax
n ) at iteration t + 1 if

���1 − �P�c (Xt+1
i Y t+1

i )�F

�P�c (Xt
i Y t

i )�F

��� < 10−2, i = 3, 4, . . . , l − 3,

(30)

where �rn is a positive integer and rmax
n denotes the maximal

rank estimate. Specifically, when the rn increased at iteration
k + 1, the Xt+1

i will be updated to [Xt
i , rand(�i

k=1nk)] and
Y t+1

i will be updated to [Y t
i , rand(�l

k=i+1nk)], i.e., adding ran-
domly generated columns �rn to Xt

i and randomly generated
rows �rn to Y t

i . By this scheme, we can obtain a low-TT-rank
estimation adapted to the target tensor.

Finally, our algorithm is summarized in Algorithm 1.

V. NUMERICAL EXPERIMENTS

In this section, we test the performance of the proposed
method (referred to as GLON) on real-world data including
color images and videos. For comparison, we select five
state-of-the-art LRTC methods: HaLRTC [33], TSVD [32],
KBR [51], TMac-TT [54], and TT-TV [58]. We scale the
test data to the interval [0, 255]. In this work, all numeri-
cal experiments are performed on Windows 10 64-bit and
MATLAB platform running on a desktop equipped with an
Intel(R) Core(TM) i7-8700 CPU with 3.70 GHz, 8 GB RAM,
and a GTX1080 GPU.

The quality of recovered results is measured by the peak
signal-to-noise ratio (PSNR) and the structural similarity index
(SSIM). By calculating the average PSNR and SSIM values
of all frames, the PSNR and SSIM values of color video can
be obtained. Higher PSNR and SSIM values indicate better
image quality.

Implementation details. For outer iteration, the conver-
gence criterion of the proposed algorithm is based on the
relative error of M between two successive iterations as
follows:

�Mt+1 − Mt�F

�Mt�F
≤ 2 · 10−3. (31)
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Fig. 2. The original color images.

Also, we set the inner iteration number k and the outer iteration
number t to 15 and 100, respectively.

The proposed method contains the following parameters:
αi in (6) controlling the global low-rankness of the desired
tensor, λ1 controlling the weight of the local prior, λ2 control-
ling the weight of the nonlocal prior, and penalty parameters
β, β1, and ρ. For αi , we set

αi = δi�l−1
i=1 δi

with δi = min(�i
k=1nk , �l

k=i+1nk), (32)

where i = 1, . . . , l − 1. We empirically set λ1 = p × 10−2,
β1 = p ×102, p = 1, . . . , 6, λ2 = 100, ρ = 0.01, and β = 20
for all experiments. For color image, we set initial TT-rank
as r = (4, 16, 5, 5, 5, 5, 12, 3), �rn = (0, 0, 5, 5, 5, 5, 0, 0),
and rmax = (4, 16, 30, 50, 50, 30, 12, 3). For color video,
we set initial TT-rank as r = (5, 5, 5), �rn = (5, 5, 5), and
rmax = (50, 50, 50). All parameters involved in the competing
methods are optimally assigned or selected as suggested in the
relevant papers to obtain the highest PSNR values. Detailed
settings are listed as follows.

• (HaLRTC [33]) There are weighted parameters αi (i =
1, 2, 3) and the penalty parameter β in HaLRTC. We use the
parameters αi = 1/3 (i = 1, 2, 3) and empirically choose the
parameter β ∈ {5 × 10−5, 10−4, 5 × 10−4, 10−3, 5 × 10−3}.

• (TSVD TSVD [32]) There is only a penalty parameter β.
We empirically choose the penalty parameter β ∈ {10−6, 5 ×
10−6, 10−5, 5 × 10−5} for higher PSNR values.

• (KBR [51]) According to the author’s suggestion, we take
the magnitude balance parameter λ ∈ {10−3, 10−2, 5 ×
10−2, 10−1, 5 × 10−1, 1, 5, 10} and the initial penalty para-
meter μ ∈ {10−13, 10−11, 10−9, 10−7, 10−5, 10−3} in their
algorithm for good performance.

• (TMac-TT [54]) We set regularization parameters αi with
referred to (32).

• (TT-TV [58]) We select the regularization parameter
λ and the penalty parameter β3 from the candidate set:
{0.01, 0.03, 0.05, 0.1, 0.3}, and set penalty parameters β1 =
5 × 103 and β2 = 0.1 provided by authors.

Meanwhile, we set the maximum number of iterations of
all compared methods to 1000. For reproducibility, the source
code will be available on https://zhaoxile.github.io/.

A. Color Image Completion

We evaluate the performance of the proposed method
on color image completion, involving random missing
and structured missing. The test data are of size 256 ×
256 × 3; see Fig. 2. In the low-TT-rank term of (6),
we transform the third-order tensor into a ninth-order tensor

TABLE II

PSNR, SSIM, AND RUNNING TIME (IN SECONDS) OF DIFFERENT
METHODS FOR COLOR IMAGE COMPLETION IN THE RANDOM

MISSING CASE. THE BEST VALUES ARE

HIGHLIGHTED IN HOLD

K(M) ∈ R4×4×4×4×4×4×4×4×3 to explore the global correla-
tion by using VDT. Meanwhile, we use the pre-trained FFDNet
and CBM3D on color images as denoisers to recover color
images.

1) Random Missing: We randomly sample incomplete
images with sampling rates (SRs) 0.05, 0.1, and 0.2, which
are sampled element-wise.

Table II shows the PSNR, SSIM, and running time of
different methods for color image completion with random
missing. We observe that our method obtains the highest PSNR
and SSIM values in all cases. More precisely, the proposed
method achieves about 3 dB PSNR and 0.2 SSIM gain than the
second-best methods. Although our method needs more time,
the recovered results have shown significant improvements
compared to competing methods in terms of PSNR and SSIM
values.

Fig. 3 shows the visual comparison of different methods
with S R = 0.1. As we can see, HaLRTC, KBR, TSVD,
and TMac-TT only recover the coarse structure of the color
images but blur image details, which suggests that the global
low-rankness prior is not enough to recovery image details.
TT-TV produces better results than TMac-TT, but generates
the artifacts introduced by TV. In comparison, GLON produces
the most visually pleasant results with satisfactorily recovered
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Fig. 3. The recovered color images by different methods with SR = 0.1. From top to bottom: palace, house, lena, monarch, and peppers.

image details and regular textures. This demonstrates the
advantages of the plugged CNN and CBM3D denoisers.

2) Structural Missing: We consider the structural missing,
which is more challenging than the random missing. Specif-
ically, we test two structural missing cases: image inpaint-
ing (black text and black stripes) and image demosaicing.
We obtain the test data by sampling the same spatial location
along all RGB channels. The test data in image demosaicing is
sampled by Bayer pattern, i.e., each two-by-two cell contains
two green, one red, and one blue (grbg).

Fig. 4 shows the results of color images for structural
sampling by different methods. For structural missing, espe-
cially when the missing entries exhibit low-rank structures, the
global LRTC method TSVD almost fails; see the third and
fourth rows of Fig. 4. From the enlarged regions, we observe
that the results obtained by HaLRTC, KBR, and TMac-TT lost
image details and textures. TT-TV yields comparative results,
but still misses some fine textures, due to the ignorance of
image nonlocal information. As a comparison, the recovered
results by GLON exhibit better visual quality with better
preservation of local image details and repetitive textures.
In addition, we observe that the proposed method obtains
the highest PSNR and SSIM values in different images and
structural missing cases.

B. Video Completion

To show the flexibility of GLON for multi-dimensional
image, we test fourth-order color videos, including foreman,
hall, and carphone.2 The size of the test videos is 144 ×
176×3×300. Considering that color videos are already high-
order tensors, there is no need to use VDT for dimension

2http://trace.eas.asu.edu/yuv/

augmentation. In addition, the spatial slice is fed in the pre-
trained FFDNet and CBM3D on color images as denoisers to
recover color videos.

Table III shows the numerical performance of the recovered
videos by different methods with different SRs, and the best
results are denoted in bold. We observe that the proposed
method obtains higher PSNR and SSIM values in all cases.
Fig. 5 plots the PSNR and SSIM values against the frame
number. Clearly, GLON achieves the best performance in most
frames.

Fig. 6 shows the restored results of two frames by different
methods with SR = 0.1. The proposed method outperforms all
competing methods in preserving image details and textures
from the visual comparison, which are consistent with the
quantitative performance in Table III.

C. Discussions

1) Contributions of Different Priors: Here, we discuss the
contributions of different priors to the performance, based on
color video carphone completion results shown in Fig. 7 with
SR = 0.2. We observe that TMac-TT (GLON without FFDNet
and CBM3D) suffers from serious block-artifacts. When only
employing CBM3D for reconstruction, the result is unsatisfied.
We attribute this to that the error textures will accumulate in
the iterations if the sampling rate too low to support a desire
block matching outcome. Benefitting from the powerful rep-
resentation ability, FFDNet performs well. However, we can
observe some vertical stripes. When taking two prior terms
into consideration, the results are better. Although the SSIM
of TMac-TT+CBM3D are lower than those of TMac-TT, the
result by TMac-TT+CBM3D is more visually pleasure. TMac-
TT+FFDNet preserves the image details well. The result by
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Fig. 4. The recovered color images by different methods for structural missing. From top to bottom: new, baboon, lena, and barbara. The numerical indexes
at the top of each image indicate the PSNR and SSIM values. The best values are highlighted in hold.

Fig. 5. PSNR and SSIM values with respect to the frame number of the
recovered videos foreman, hall, and carphone (SR = 0.05) by different
methods.

FFDNet+CBM3D is better than that by isolatedly utilizing
FFDNet and some image textures are preserved well.

As a whole, the results of the last four methods of Fig. 7
are of higher visual quality. That is, these four methods all
perform well for spatial preservation. Fig. 8 shows the pixel
values of the video carphone restored by different methods in
the temporal mode. We can see that our GLON outperforms
FFDNet, FFDNet+CBM3D, and TMac-TT+FFDNet, being
closer to the original data.

Therefore, from the conjoint analysis on Figs. 7 and 8,
we can conclude that these three prior knowledge terms
have different effects and are indeed complementary to each
other.

2) Parameters Discussions: We test the effects of parame-
ters λ1 and λ2 on the performance of the proposed method,
based on color image completion results shown in Table IV
with SR = 0.1. In the proposed model (6), λ1 and λ2
control the weights of the local prior and the nonlocal prior,
respectively. Table IV suggests that the best visual quality is
achieved when λ1 = 0.05 and λ2 = 100. However, too large

TABLE III

PSNR, SSIM, AND RUNNING TIME (IN SECONDS) OF DIFFERENT
METHODS ON COLOR VIDEOS WITH THE RANDOM MISSING

CASE. THE BEST VALUES ARE HIGHLIGHTED IN HOLD

λ1 and λ2 lead to over-smooth results; too small λ1 and λ2
suffer from severe artifact effects. Specifically, λ1 controls the
local prior constraint, too large λ1 leads to the blurred restored
image, which demonstrate beyond the processing capacity
of FFDNet; too small λ1 leads to some artificial repetitive
patterns in the beard part of the baboon. λ2 controls the
nonlocal prior constraint, too large λ2 leads to that textures
of the restored image cannot be kept well due to the ability
of CBM3D to explore NSS is limited; too small λ2 leads to
some fake textures in the restored image, i.e., some textures in
the nose part of the baboon. In summary, only when FFDNet
and CBM3D cooperate with each other, the abundant details
and repetitive textures can be simultaneously preserved well
(see the third result in the third row).
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Fig. 6. The 50-th and 230-th frames of the recovered color videos by different methods with SR = 0.1. Top two rows: hall, bottom two rows: carphone.

Fig. 7. The 82-th frames of the recovered color video carphone by
TMac-TT, CBM3D, TMac-TT+CBM3D, TMac-TT+FFDNet, FFDNet, FFD-
Net+CBM3D, and GLON with SR = 0.2. The numerical indexes at the bottom
of each image indicate the PSNR and SSIM values.

Based on the above observations, we recommend adjusting
the parameter λ1 from [0.01, 0.1] with the increment of 0.01
and λ2 from [100, 500] with the increment of 100 to obtain
the highest PSNR restoration result for all datasets. For the
penalty parameters β, β1, and ρ, we recommend setting
β = 20, β1 = 0.01, and ρ = 0.01 for all datasets.

Next, we discuss the influence of the inner iteration number
k and the outer iteration number t on the performance of
the proposed method. Taking the color image barbara with
SR = 0.1 as an example, Fig. 10 shows the performance of
the proposed method with different settings of parameters k
and t . In Fig. 10(a), when the outer iteration number t is fixed
to 100, we observe that the PSNR curve is stable when the
inner iteration number k ≥ 15. Fig. 10(b) shows that when
the inner iteration number k is fixed to 15, the performance
is robust for the outer iteration number t ≥ 100. Considering
that the computational time increases with increasing k and t ,
we fix k = 15 and t = 100 for all experiments.

3) Generalization: The FFDNet is pretrained on the natural
images and the CBM3D is originally designed for the natural
color images. It is not a surprise that our method could achieve

good performance on the color images and color videos, which
are captured from real-world natural scenes. Thus, the gener-
alization ability of the proposed method should be tested and
we select the fluorescence images to this end. We implement
all the methods on fluorescence images with SR = 0.1. Fig. 9
exhibits the results by our method and the compared methods.
It can be found that the recovered results by our method
are more visual pleasant. The details and textures are well
preserved by our method. It is worth noting that although deep
learning-based prior (FFDNet) is trained from a number of
natural images, the proposed method can be directly applied
to those unnatural images. Therefore, we demonstrate that the
proposed method can flexibly complete different kinds of data
including natural images and unnatural images.

4) Convergence Behaviors: In theory, we have established
the convergence guarantee of the proposed algorithm in
Theorem 1. Here we show the numerical convergence of
the proposed algorithm. Taking the color images baboon,
monarch, and palace as examples, Fig. 11 shows the relative
error curves of the successive restored image Mk and Mk+1,
i.e., �Mk+1 − Mk�F/�Mk�F . We observe that the relative
error keeps decreasing as the iteration number increasing,
which demonstrates the numerical stability and the conver-
gence of the proposed algorithm.

5) Further Discussion: Here, we compare the proposed
GLON method with Tubal-Alt-Min [66] and NGmeet [57].
We test color images barbara and lena with random sam-
pling rates (SR = 0.8 and SR = 0.2). Fig. 12 (a) shows
the recovered results of GLON with Tubal-Alt-Min with
SR = 0.8. As a comparison, our method obtains higher PSNR
and SSIM values and achieves better visual restoration results.
This is because that Tubal-Alt-Min only considers the low-
tubal-rankness of data. Fig. 12 (b) shows the recovered results
of NGmeet and GLON with SR = 0.2. We can observe that
NGmeet could not preserve image details well, due to the
ignorance of local information of images and the invalidity of
the low-dimensional subspaces assumption for color images.
In comparison, the proposed method performs well on the
global structures and local image details preservation, which
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Fig. 8. The pixel values along the temporal dimensional (the same location of each frame) of the recovered video carphone by different methods. (a) FFDNet.
(b) FFDNet+CBM3D. (c) TMac-TT +FFDNet. (d) GLON.

Fig. 9. The recovered fluorescence images by different methods with SR = 0.1.

TABLE IV

INFLUENCES OF PARAMETERS λ1 AND λ2 ON THE COMPLETION
PERFORMANCE. THE NUMERICAL VALUES AT THE TOP OF

EACH IMAGE INDICATE THE PSNR AND SSIM VALUES.
THE BEST ARE BOXED IN RED RECTANGLE

suggests that the global, local, and nonlocal priors are origi-
nally combined and benefit from each other.

VI. CONCLUSION

We have proposed a flexible low-rank tensor completion
framework for multi-dimensional image recovery, in which
different types of local and nonlocal priors knowledge can be
flexibly and simultaneously utilized. Specifically, we introduce

Fig. 10. The PSNR curves with respect to the inner iteration number k and
the outer iteration number t , respectively. (a) Inner iteration number. (b) Outer
iteration number.

Fig. 11. The curves of relative error versus iterations.

the low-TT-rank regularization and two denoisers CNN and
CBM3D to explore the advantages of global-local-nonlocal
priors. These three priors are complementary to each other,
so that the proposed method can preserve simultaneously
the global structures, the local details and features, and the
nonlocal textures of the underlying tensor. We develop an
efficient PAM algorithm to solve the proposed framework
and establish the theoretical convergence guarantee. Extensive
numerical experiments including diverse data (color images,
color videos, and fluorescence images) and samplings (random
and structural samplings) are also reported to validate the
uniqueness and complementarity of different types of priors
(global TT low-rank prior, nonlocal self-similar prior, local
deep prior) for multi-dimensional image recovery. In the
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Fig. 12. The recovered color images by different methods with (a) SR = 0.8 and (b) SR = 0.2.

future, we will extend the proposed method to other image
processing tasks, such as image denoising [57], [88], image
deblurring [89], hyperspectral unmixing or fusion [90], [91],
image classification [92], and target detection [93]. For visual
data, one remaining challenge for our framework is to recover
the large areas missing across all bands without side infor-
mation (e.g., multi-temporal information). Moreover, since
the prior of visual data is considered in our framework, the
proposed framework is suitable for visual data and might not
be suitable for non-visual data, e.g., traffic data and internet
data. We will attempt to address the remaining challenges in
our future work.
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